
Respiratory Pathology of Laboratory Animals

Introduction

The mouse is now the preferred species for most biomedical research, so the mouse lung has become the focus of basic research, toxicology and drug development.

While the mouse is genetically closely related to man, it differs in lung anatomy, physiology, and immunology.

Introduction (cont.)

Reasons for use of mice for pulmonary research

- Technology for over expression or ablation of target genes.
- Mouse gene defect leading to disease phenotype may translate to human genotype responsible for disease.
- Increased understanding of mouse immune system.

Creation of GEM Pulmonary Models

- Lung directed e.g. Clara cell 10kDa (CC10) protein promoter
- Externally regulated e.g. tetracyline-inducible (use of two transgenic constructs) – for timing of expression. Allows adult, rather than developing lung to be targeted.
 Often used together with exogenous agent such as cigarette smoke, infection

Advent of Genetically Engineered Mice (GEM)

 Increased prevalence of mouse pathogens
 Increased trafficking of mice among laboratories
 Increased susceptibility of GEM to infections

Rats !!!

- Recent advances in development of genetically engineered rats
- Likely to see a similar increase in pathogen prevalence

What pathogens are being found in genetically engineered rodents?

 Reemergence of previously recognized pathogens

Emergence of new pathogens

Postnatal Lung Development

Completed	Mouse/Rat	Human
Stage		
Alveolar	4-7 days	Birth
Development		
Capillary Fusion and	3 weeks	3 years
Septal Thinning		
Alveolar	5 weeks	8 years
Multiplication		
Lung Growth	6-10 months	20 years

Comparative Respiratory Anatomy/Physiology

	Mouse	Rat	Human
Vomeronasal Organ	Present	Present	Absent
Nasal Turbinates	Double scroll	Double scroll	Simple Scroll
Lung Anatomy	Right: 4 lobes Left: 1 lobe	Right: 4 lobes Left: 1 lobe	Right: 3 lobes Left: 2 lobes
Pleura	Thin	Thin	Thick
Secondary Lobulation	Absent	Absent	Incomplete
Total Lung Capacity (TLC)	~1ml	10 ml	6000 ml
Total Lung (Parenchyma)	18%	24%	12%
Blood-Gas Barrier Thickness	0.32µm	0.38 µ m	0.62 µm
Pulmonary Veins	Cardiac muscle	Cardiac muscle	Thin, mainly fibrous wall

Human Pulmonary Disease Models

Chronic Obstructive Pulmonary Disease (COPD) Emphysema ■ Asthma Lung Cancer Pulmonary Alveolar Proteinosis (PAP) Cystic Fibrosis Pulmonary Hypertension Pulmonary Fibrogenesis Pulmonary Toxicity