can we getz ... a bigger swinny pool?

DROWNING & BURNS

JODIE GERDIN DVM DACVP AUSTRALIA 2018

OVERVIEW: DROWNING

- Definitions
- Nx findings
- Histo findings

ASPHYXIA

 An umbrella term for death due to body-wide lack of oxygen (hypoxia/ anoxia)

•Asphyxia is a mechanism of death, not a COD

- Previously terminology inconsistent, recent review/ standardization (Sauvageau 2012)
- Asphyxia is classified into 4 broad categories:
 - 1. Suffocation
- 2. Strangulation
- 3. Mechanical asphyxia
- 4. Drowning

Types of Asphyxia

DROWNING DEFINITION

- Fatal respiratory impairment from submersion / immersion, with the airway covered by liquid*
 - A liquid/air interface is present at the entrance of the airway, preventing breathing air
 - Not "filling the respiratory tract with liquid"
 - Small amounts of liquid can RARELY cause drowning
 - Drowning after any H2O-related activities
 - Playing in pools, sprinklers, lakes, streams, baths, etc.

*World Congress on Drowning 2002

DEFUNCT DEFINITIONS

Non-fatal drowning

• Water aspirated \rightarrow rescue \rightarrow survives

Fatal drowning

Water aspiration → rescue → dies

• No longer used:

- Active & Passive drowning, Dry & Wet drowning, Near-drowning, Secondary drowning
- Confusing terminology arose due to drowning victims with few/mild initial respiratory signs
 - Most signs are immediate, nearly all in 8 hrs, up to 24 hours later

DROWNING: NX GOALS

- If Hx of exposure to liquid, consider drowning
- For bodies is found in H20, determine:
 - Animal alive or dead at the time of submersion
 - Not all bodies recovered from H20 drowned;
 - Often, bodies are **disposed of in water**
 - Death due to something else while in water
 - Rule in/out drowning, other CODs
 - Contributing illness making submersion fatal
 - Seizures, ataxia, blindness, etc.

DROWNING: NX FINDINGS

- Body wet ("spiked" haircoat)
- Foam / froth in upper airways
 - Mix of aspirated H2O, mucus, & surfactant
- Emphysematous & edematous lungs
 - Soggy (edema) and/ or crepitant (emphysema)
 - +/- Rib impressions
 - Copious fluid exudes from the cut surface
- Multifocal, patchy, red areas in lungs
 - Due to congestion, atelectasis, & hemorrhage
 - If no significant pulmonary edema, ascribing the COD to drowning is unwise
- Water, mud, sand, plant matter in alveoli or stomach

Drowned wallaby. Wet hair coat looks "spiked". (Also head trauma)

Drowned cat with liver fracture. Lungs have not collapsed, & small scattered areas of hemorrhage.

Drowned raccoon. Lungs are look "full" & failed to collapse.

Cornell University College of Veterinary Medicine Section of Anatomic Pathology

Drowned squirrel. Lungs hyper-inflated, failed to collapse.

Drowned dog. Multifocal areas of congestion / hemorrhage & failure to collapse.

DROWNING: HISTOLOGY

 H2O does not passively seep into the deep lung tissue in deceased or unconscious people– Aspiration requires active ventilation

•HISTO:

- Alveolar edema & hemorrhage
- •Expansion / coalescing alveolar spaces with torn (blunted/ clubbed) alveolar walls
 - AKA Emphysematous change
- •Foreign material (plant, sand, etc.) in airways
 - •Especially in terminal /deeper airways

Lung, drowned cat. Unidentified foreign material in bronchioles.

EXCEPTION: DIVING ANIMALS

- Lunged species that spend a significant % of time in water rarely if ever aspirate, even though drowning is certain based on circumstances (caught in nets, etc.) – JG opinion/ communication
 - Ex: Seals, sea turtles, otter...
- These animals may never involuntarily aspirate (gasp); larynx stays closed→ hypoxia→ death
- COD is suffocation

BURNS

OVERVIEW: BURNS

- Classification of burns
 - Depth
 - Cause / 6 types
- Nx goals
 - Assess depth & estimate the extent
- How to evaluate burned / charred remains

BURNS

- Burn = Wound due to excessive heat
- Severity depends on:
 - Temperature
 - Duration of exposure
 - Ability of the tissue to dissipate heat

SKIN BURN DEPTH

- #1 organ burned
- Classified by thickness (degree)
- Superficial (1st degree)
 - Some/all epidermis → erythema
- Partial thickness (2nd degree):
 - Entire epidermis & some/all dermis
 → blisters, skin necrosis
- Full thickness (3rd & 4th degree)
 - Epidermis & dermis plus some/all SQ
 → charred tissue, exposure of fat & muscle
 - Painless (nerves dead)

Normal

Partial

First degree burn Involves top layer of epidermis only

Second degree burn

- Skin blister
- Involves all of epidermis and some of dermis
- May involve all of the dermis

May extend into deeper tissues

Superficial

Full thickness

SUPERFICIAL BURNS

Epidermis only

- Red +/- swollen (erythema & edema)
- Mildly painful
- **Do not scar**. No injury to basement membrane / stem cells

PARTIAL THICKNESS BURNS

- Entire epidermis + some Dermis injured
 - Ooze blood/ serum→ Scab; Humans blister
 - +/- Scar, +/- Alopecia
 - Depends on whether stem cells were injured
 - Painful

FULL THICKNESS BURNS

- All of epidermis & entire dermis injured
 - SQ exposed (3rd degree) +/- injured (4th degree)
 - Not painful (nerves dead)
 - No re-epithelialization \rightarrow Scar
 - +/- Eschar = dry, black
 scab of necrotic skin
 from burns

EVALUATING BURNS

- Rate depth based on worst-affected area
- Often challenging; most are a mix of depths
- Full extent often peaks several days after exposure
- Histo may be helpful to determine depth

Dog. Burn depth (thickness)?

Partial thickness / 2nd degree

Dog. Depth (thickness)?

Dog. Full thickness burn, cause unknown. An eschar is present.

BURN TYPES: EXAMPLES

1. Scalds

- Ex: Garden hoses left in the sun
- 2. Fire/ flame
 - Ex: House fires

3. Electrical

• Ex: Electrical cords

4. Contact

• Ex: Heat rocks, Car mufflers, Brands

5. Radiation

• Ex: Sunburns (UV), microwaves, Radiation Tx

6. Chemical burns

• Ex: Petro-chemical burns, Severe contact dermatitis

CIGARETTE BURNS

- Purposeful burns made by holding the cigarette perpendicular to skin→
 - ~1.0 cm diameter round crater, well-defined edge
- Accidental brushing up against a cigarette → "Comet" lesion: Round spot & tapering tail

SCALDS

- Contact with wet heat
 - Ex: Boiling H2O, steam, etc.
- Pattern
 - 1 or more usually coalescing burns, often on dorsum
 - Margins irregular, elongated dorsal to ventral (gravity)
 - Severity lessens ventrally (liquid cools & drips off)
 - Tiny satellite burns d/t Drips & Splashes
- Even superficial scalds can produce significant scarring
- No singeing of hair
Photos courtesy Dr. Robert Reisman, ASPCA

Healing scald with peripheral re-epithelialization.

Photos courtesy Dr. Robert Reisman, ASPCA

Healing scald with peripheral re-epithelialization. Note dorsal distribution & "splash / drip" pattern (arrows).

CONTACT BURNS

- A hot surface directly contacts the body
 - Ex: Heat rocks, Car mufflers, Brands, irons, etc.
- Dog. Contact burn (hot pavement)
- Thickness?

CONTACT BURNS

- A hot surface directly contacts the body
 - Ex: Heat lamps / heat rocks, Car mufflers, Brands
- Dog. Contact burn (hot pavement)
- Partial thickness

ELECTRICAL BURNS

- May cause focal or branching (arborizing) skin lesions
 - Ex: Cautery, bit electrical cords, & lightning
- High voltage: Central crater w/brown-yellow margin
 - May be see in combo w/ flame burn if the hair coat catches on fire
- Low voltage: No lesions OR Central chalky white crater with erythema
- Electricity causes distinct histological changes
 - "Windblown" (elongated) nuclei

Electric collar (invisible fence) collar wound- NOT A BURN. Pressure necrosis. No gross signs of a burn.

MICROWAVE BURNS

- Microwaves heat water, inc. water in tissues
 - Tissue with a high H2O content reaches a higher temp than tissues with less water
- Primarily affects skin, muscle & internal organs; spares SQ fat (contains little water)
- Well-demarcated & unevenly distributed
 - Focal "hot spots" where 1 tissue abuts another
- The severity of the injuries corresponds to the duration of exposure

MICROWAVE BURNS

- 2008 Munro: Fatal feline cases
 - Flexure of the forelimbs at the carpus with or without ex-sheathing of the claws (~pugilistic posture)
 - Fragility of the skin +/- splitting with sharp, well delineated, edges
 - Crumpling & reddening of the tips of the ears
 - Congestion of all lung lobes
 - Internal organs readily disintegrate & have the odor of cooked chicken
 - Absence of singed hair

Woman killed cat for eating her goldfish by putting it in a microwave. (Sentence: Jail-14 weeks)

https://www.express.co.uk/news/uk/464624/Woman-jailed-for-14-weeks-after-putting-cat-in-microwave

FIRES & FLAME BURNS

- Skin is in direct contact with a flame
 - Severity depends on duration of exposure
 - Singes hair, then chars skin, nails, & deeper tissues
 - Flash burns-- sudden ignition / explosion of a volatile substance (accelerants)
 - Produces a uniform burn (1st or 2nd degree) on all exposed areas & singes the hair

Singed whiskers. Only seen with fire / flame burns.

Flash Burn. Cat doused with lighter fluid & set on fire. Even singeing, charring & contraction of the skin (heat). Found alive but quickly euthanized.

Cat; body burned on a fire after death in an attempt to dispose of the body/ destroy evidence. Well delineated areas of singed hair.

Burned cat, section of lung. Small pieces burned hair in the bronchi & alveolar spaces (circled).

Young Pit Bull put in oven. Not a fire / flame burn, but similar?

Dog that was in a house fire with thermal burns.

Toxic epidermal necrolysis (TEN) in a dog & cat. Similar "clown-face" appearance to flame burns. Function of thinness of skin?

Lack of improvement with supportive care, lack of accelerant odor, & histo of the affected areas differentiate TEN from burns.

BURNED REMAINS: NX GOALS

- Was death due to fire, or was the body burned?
 - Soot in upper airway = Evidence of smoke inhalation ("vital change") = proves animal was alive to inhale smoke
 - Have area set aside for examination of pluck
 - Avoid cross contamination of soot on body into organs
 - Use new/ clean gloves & clean knife to get histo samples
 - +/-Accelerant testing
 - +/- Blood carbon monoxide [CO] (standard in people)
 - Look for cherry red livor mortis
 - CO-Hb is very stable with no exposure to light
 - Test likely valid for days
 - EDTA heart blood sample
 - Human lab?

BURNED REMAINS: ARTIFACTS

- Artifacts of extreme heat:
 - Bone Fx including skull
 - Epidural hematomas
 - Skin splitting
 - "Pugilistic posture" flexion of the elbows & carpi
- Internal organs typically preserved

Brain of burned cat with small epidural hematoma

FIRES: ACCELERANT TESTING

- Animals **not** spontaneously combustible; Accelerants must be used
- Collect ASAP!
 - Accelerants (volatiles) evaporate quickly
- Collect anything that smells
 - Ex: collars, haired skin
- Collect least-burned areas
 - Accelerant least-consumed
- Clean metal or glass container

Dog in house fire (hind end). **Pugilistic posture**: Flexion of the hips, stifles & digits & extension of hocks, due to heat contraction of collagen in muscle & tendons.

Dog (same as previous). Flexed shoulders, elbows & carpi, contracture of skin & curled back lips. Well delineated area of spared skin & hair (white patch). Tracheal ulceration (thermal injury) \rightarrow COD= smoke inhalation.

CHEMICAL BURNS

- Strong acids & alkalis cause direct cell damage
- Severity depends on the agent, strength / concentration, & duration of contact
 - Alkaline agents (pH greater than 11.5) tend to produce more severe (full thickness) injury compared to acids
- Gross lesions resemble other burns, especially scalds
- Predominantly skin
 - Tissue necrosis
 - +/- Blistering (people)
 - More superficial compared to thermal burns

CHEMICAL BURNS

- Ddx chemical from thermal difficult
 - Histo *might* help
 - Heat "wicked" by hairs, disproportionate damage to follicles
 - Chemical residue Odor or liquid itself
- Ddx accidental from purposeful may be difficult
 - Hx / investigation dependent
 - Severe irritant contact dermatitis
 - Idiosyncratic reactions to topical Rx, especially flea/tick preparations

Suspected chemical burn with ventral distribution: Paws, rump, elbows, from sitting/walking in the chemical, & mouth from licking it off.

Photos courtesy Dr. Robert Reisman, ASPCA

LEFT: Severe irritant contact dermatitis from a reaction to topical flea/ tick medication (right).

RIGHT: Scald caused by garden hose.

The dorsal midline burn is a common pattern, seen with a wide variety of accidental & purposeful causes. Determining the cause without a history may be impossible.

ESTIMATING % AFFECTED

- "Rule of 9s" not accurate for other species
- How many credit cards does it take to cover the burn?
 - Determine Body Surface Area based on weight -- standard conversion charts (as for chemo)

% BSA = [# cards x 0.45] / total BSA

EXAMPLE: 6kg dog; 22 card burn 22×0.45 %BSA burned = ------ $0.33m^2$ = 30%

Conversion Tables for Weight to Body Surface Area

DOG BSA (m²) = 0.101 x BW(kg)^{2/3}

kg	m²
0.5	0.06
1	0.10
2	0.15
3	0.20
4	0.25
5	0.29
6	0.33
7	0.36
8	0.40
9	0.43
10	0.46
11	0.49
12	0.52
13	0.55
14	0.58
15	0.60
16	0.63
17	0.66
18	0.69
19	0.71
20	0.74
21	0.76
22	0.78
23	0.81
24	0.83
25	0.85

kg	m²
26	0.88
27	0.90
28	0.92
29	0.94
30	0.96
31	0.99
32	1.01
33	1.03
34	1.05
35	1.07
36	1.09
37	1.11
38	1.13
39	1.15
40	1.17
41	1.19
42	1.21
43	1.23
44	1.25
45	1.26
46	1.28
47	1.30
48	1.32
49	1.34
50	1.36
55	1.46

CAT BSA (m²) = 0.100 x BW(kg)^{2/3}

m²
0.060
0.100
0.134
0.159
0.184
0.208

kg	m²
3.5	0.231
4.0	0.252
4.5	0.273
5.0	0.292
5.5	0.311
6.0	0.330

BURNS: NX GOALS

Healing obscures

- 1.Document location(s) affected
- Remember to check oral cavity
- 2. Estimate % body surface affected
- 3. Assess the depth
- 4. Diagnostic features
 - Eschar, blisters, "splashes"

5. Cause of death = Burn

- ID type (if possible): Scalding, Contact, Flame, Electrical, Microwave, & Chemical
- Does the burn fit with the explanation?

SUMMARY

- 6 types of Burns:
 - Scalding, Contact, Flame, Electrical, Microwave, & Chemical
- Burns should be described in terms of:
 - 1. Depth: superficial, partial, complete thickness
 - 2. Extent: % total body surface area affected
 - 3. Distribution (Pattern): Anatomic location(s), drips/ splashes?
- 4. Features of the burn: singed or charred tissue, or eschar
- Animals exposed to fires evaluate for exposure to:
 - Smoke/ fumes & Carbon monoxide
 - Exposure to heat.
- Consider accelerant testing
REFERENCES

- Szpilman D, et al. "Dry drowning" and other myths. Cleve Clin J Med. 2018;85(7):529–535.
- Munro R, Munro HMC. Animal abuse and unlawful killing: Forensic veterinary pathology. Elsevier Ltd; 2008.
- Reedy LM, Clubb FJ Jr. Microwave burn in a toy poodle: A case report. The Journal of the American Animal Hospital 1991;27:497– 500.
- Budd R. Burns associated with the use of microwave ovens. J Microw Power Electromagn Energy. 1992;27(3):160–163.
- Sobhakumari et al. Pathology of carbon monoxide poisoning in two cats. BMC Veterinary Research (2018) 14:67
- Malic CC, et al. Resuscitation burn card--a useful tool for burn injury assessment. Burns. 2007 Mar;33(2):195-9.
- Sauvageau A, Boghossian, E. Classification of asphyxia: The need for standardization. J Forensic Sci 2012;55:1259-67